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Abstract

In operational equating, frequency estimation (FE) equipercentile equating is often excluded

from consideration when the old and new groups have a large ability difference. This

convention may, in some instances, cause the exclusion of one competitive equating method

from the set of methods under consideration. In this report, we study the possibility of

using the FE equating method when the group ability difference is large. Three situations

are identified: (a) a situation in which neither the two forms nor the observed conditional

distributions are very different so that the FE equating assumptions are likely to hold, and

FE equating is recommended; (b) a situation in which forms are not very different, but the

observed conditional distributions are different, so that FE equating is not recommended;

and (c) a situation in which forms are very different, but the observed conditional

distributions are not different, so that FE equating is not recommended. Statistical analysis

procedures for comparing distributions are provided. An application of equating to a

large-scale admission test is discussed to illustrate the proposed methodology.

Key words: FE equipercentile equating, conditional distribution, form distribution,

comparison
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1 Introduction

The frequency estimation (FE) equipercentile equating method, described by Angoff

(1971) and Braun and Holland (1982), is one of a small number of observed equating

methods that can be used with the common-item nonequivalent group design or the

nonequivalent groups with anchor test (NEAT) design when the new and old test score

distributions are found to have a curvilinear relationship. The FE equipercentile equating

method assumes the invariance of conditional score distributions of the focus, or new group

(P ), and the reference, or old group (Q), on the anchor (the common items). Specifically,

let X and Y be the new and old test forms, and let x and y be the test scores on X and

Y , respectively. Let V and v be the anchor test and score, and let hP (v) and hQ(v) be the

anchor score distributions of P and Q, respectively. In the NEAT design, population P

takes form X and anchor V ; population Q takes form Y and anchor V . The observable

fP (x|v) stands for the conditional distribution of x given an anchor score v for population

P , and gQ(y|v) stands for the conditional distribution of y given an anchor score v for

population Q. The FE equipercentile equating makes the assumptions that, for all v,

fP (x|v) = fQ(x|v) and gP (y|v) = gQ(y|v), (1)

where fQ(x|v) and gP (y|v) are unobservable.

Because the preceding FE equipercentile equating assumptions are untestable,

it can be difficult to decide whether FE equating should be considered in a particular

equating situation. Many researchers have been exploring the criteria used in making

equating decisions by using comparison methods under the expectation that they can guide

practitioners in their choice of equating method (a survey can be found in Harris & Crouse,

1993). Other researchers have tried to investigate equating assumptions from a theoretical

point of view or through special data designs. Von Davier, Holland, and Thayer (2004)

showed, on a theoretical level, that FE equating and chained equipercentile (CE) equating

are identical under certain ideal conditions. One ideal condition is when the two groups are

of the same ability, that is, when hP (v) = hQ(v). In this case, the assumptions of (1) are

true. Both FE equipercentile equating and CE equating yield the same equating function,
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as discussed in Theorem 2 of von Davier et al. (2004). FE equipercentile equating will work

perfectly to adjust for form difficulty. As might be expected, FE equipercentile equating

and CE equating work in the same way for equipercentile equating under the equivalent

groups (EG) design. Another ideal condition is when X = Y = V with perfect correlation,

as discussed in Theorem 3 of von Davier et al. (2004). In this case, the equating functions

of both FE and CE are the identity function. Holland, von Davier, Sinharay, and Han

(2008) studied the untestable assumptions of FE equating and CE equating. The authors

compared predictions from both FE equipercentile equating and CE equating assumptions

based on a special data set and an elaborate design with a true criterion. Their results

indicated that both FE equating and CE equating make very similar predictions. Overall,

as mentioned by Kolen and Brennan (2004, p. 298), FE equipercentile equating might be

preferred when groups are similar because the FE equipercentile equating assumptions are

most likely to be true in that situation.

Is it possible to use FE equipercentile equating even when group abilities are

significantly different? In this study, we investigate the assumptions of FE equipercentile

equating based on observed score distributions and item difficulty distributions for the

forms, and we try to verify indirectly when the FE equating assumptions are true and when

they are incorrect. This verification will then guide practitioners in deciding whether FE

equating is applicable when the ability difference between groups is significant.

In section 2, we generalize the results of Theorem 3 of von Davier et al. (2004)

for obtaining an identity equating function; we then discuss theoretically whether FE

equipercentile equating assumptions are true under different situations and their practical

implications. While our focus is on the FE equipercentile equating method, the CE equating

method is discussed in this section for the section to be comparable to the results of von

Davier et al. (2004). In section 3, we suggest statistical methods to test for homogeneity

of probability distributions, which can help verify FE equipercentile equating assumptions

indirectly in practice. The difficulty in choosing an equating method lies in the fact that it

is impossible to test some of the crucial assumptions of each equating method. When the

two groups’ abilities are similar, that is, hP (v) ∼ hQ(v), the assumptions in (1) are most
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likely to be true, and practitioners feel safe in choosing the FE equating method. On the

other hand, when hP (v) and hQ(v) are significantly different, practitioners are reluctant to

use FE equating in their operational work, even though the FE equating assumptions might

be true under some circumstances. If so, a competitive equating method (i.e., FE equating)

might easily be excluded from consideration, as is shown in our illustrative example in

section 4. Section 5 draws conclusions. Note again that we assume throughout the report

that the group ability difference is large.

2 When Are Frequency Estimation Assumptions True, or Likely to Be True?

We first generalize the results of Theorem 3 of von Davier et al. (2004), in which it

is assumed that X = Y = V , so that an examinee has the same score on the three tests. It

is obvious that the FE equipercentile equating assumptions are true and that the equating

function is the identity function no matter how different P and Q are. The assumption

X = Y = V is very stringent. We argue that to obtain the same conclusion, the anchor test

need not be the same as the test forms. Denote the synthetic group as

T = wP + (1− w)Q, w ∈ [0, 1].

Let fT , gT , and hT be the corresponding score density functions for the synthetic group and

FT , GT , and HT be the corresponding cumulative distribution functions on tests X, Y , and

V , respectively. We assume that the cumulative distributions have been made continuous,

or continuized, so that the inverse functions exist.

Theorem 1. If test forms X = Y , and the test score and anchor score satisfy

v = l(x) for an examinee, where l(·) is a monotonic function, then the equating functions of

FE and CE are both the identity function.

Proof. When X = Y , fP (x|v) = fQ(x|v) because they are 1 when v = l(x), or 0 otherwise.

So are gP (y|v) = gQ(y|v). Therefore, as in Theorem 3 of von Davier et al. (2004), for

v = l(x),

fT (x) =
∑
v

fP (x|v)hT (v) = hT (v)
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gT (y) =
∑
v

gQ(x|v)hT (v) = hT (v),

where hT (v) = whP (v) + (1 − w)hQ(v). Thus the equating function of FE is the identity

function.

Note that v = l(x). Then HP (v) = HP ◦ l(x) = FP (x) and HQ(v) = HQ ◦ l(y)

= GQ(y). Therefore the equated score ey(x) on form Y for the score x on form X by CE

equating is

eY (x) = G−1
Q ◦HQ ◦H−1

P ◦ FP (x) = G−1
Q ◦HQ ◦H−1

P ◦HP (v)

= G−1
Q ◦HQ(v) = y = x,

where v = l(x) = l(y). The theorem is obtained.

Note that when l(x) = x, one obtains Theorem 3 of von Davier et al. (2004) from

Theorem 1 of this report. The function l can be either a linear or a nonlinear function, but

the crucial property of the conditions in Theorem 1 is that the anchor score and the form

score can be uniquely determined by each other, which, in reality, is usually impossible.

Also note that v = l(x) is a sufficient condition for the FE equating assumptions.

The following result applies to more general settings.

Theorem 2. If X = Y , and the FE equating assumptions (1) are true, then the

equating function of FE is the identity function.

Proof. By FE assumptions, fP (x|v) = fQ(x|v) and gP (y|v) = gQ(y|v) so that the observed

conditional density functions fP (x|v) and gQ(y|v) are the same because X = Y . Note that

the score distributions of the synthetic group on the two forms are

fT (x) =
∑
v

fP (x|v)hT (v)

gT (y) =
∑
v

gQ(y|v)hT (v),

which are identical functions. Thus we obtain eY (x) = x.

For theoretical purposes, we list several situations in which we can tell whether the

FE equating assumptions (1) are true by using observed data when the ability difference

between P and Q is large:
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1. When we observe that the two forms X = Y ,

(a) if we further observe that fP (x|v) and gQ(y|v) are the same, then the assumptions

(1) hold because fP (x|v) = gP (y|v) and gQ(y|v) = fQ(x|v) when X = Y . Therefore

fP (x|v) = fQ(x|v) and gQ(y|v) = gP (y|v).

(b) if we further observe that fP (x|v) and gQ(y|v) are different, then the assumptions

are wrong for the same reason as given in (1a).

2. When we observe that the two forms X and Y are different,

(a) if we further observe that fP (x|v) and gQ(y|v) are the same, then the assumptions

(1) are wrong. Otherwise, if the assumptions are true, then fP (x|v) and gP (y|v) are

the same; that is, the score distributions on X and Y are the same for P (and for

Q), which is contradictory to the fact that X ̸= Y .

(b) if we further observe that fP (x|v) and gQ(y|v) are different, we cannot determine

whether the assumptions are valid. Other evidence has to be collected.

We can generalize Theorem 2 under the following conventions: If two test forms X

and Y are statistically the same, that is, the two test forms have the same distributions of

item difficulty statistics, then a population will have the same score distributions on the

two test forms. Therefore, when two test forms are statistically the same, Theorem 2 holds.

Embedding the preceding discussion in a practical setting, we conclude that when

the ability difference is large, FE equating is recommended only when we observe that the

two forms are very close in their distributions of item difficulties, and fP (x|v) and gQ(y|v)

are the same, because the FE equating assumptions are likely to be true. In this case, the

FE equating function is expected to be close to the identity function from Theorem 2. FE

equating is not appropriate when we observe that the two forms are very different but

fP (x|v) and gQ(y|v) are the same, or when the two forms are very close but fP (x|v) and

gQ(y|v) are different.

Of course, there are also issues related to whether equating should be done when the

two forms are really close in form difficulty (see, e.g., Dorans & Lawrence, 1990; Hanson,

1996). However, as Kolen and Brennan (2004, p. 296) pointed out, Hanson’s (1996)
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approach only considered random sampling error and not systematic error. When the two

forms are similar and the observed conditional distributions are the same under the NEAT

design, the FE equipercentile equating assumptions are likely to be true. Then FE equating

is recommended, instead of no equating, in the hope that FE equating can adjust for some

systematic error.

Is it possible that the two groups are different, but the observed conditional

distributions are the same? We illustrate this possibility using an ideal example. Let

fP (x, v) be the observed bivariate score distributions of population P on the test form

X and the anchor V , and let gQ(y, v) be the observed bivariate score distributions of

population Q on the test form Y and the same anchor V . Assume that fP (x, v) and

gQ(y, v) follow bivariate normal distributions N((µx, µv,P ), (σ
2
x, σ

2
v,P , ρP )) and N((µy, µv,Q),

(σ2
y , σ

2
v,Q, ρQ)), respectively. For simplicity, let the variances be 1 and ρP = ρQ = ρ > 0

in the following discussion. Then the conditional density of X, given V , is a normal

distribution with conditional mean and conditional variance (Kendall & Stuart, 1977, p.

411), as follows:

µ(X|V = v) = µv1 + ρσv1(v − µx)/σx

σ2(X|V = v) = σ2
v1(1− ρ2).

The conditional density of Y , given V , is also a normal distribution, with

µ(Y |V = v) = µv2 + ρσv2(v − µy)/σy

σ2(Y |V = v) = σ2
v2(1− ρ2).

Then fP (x|v) and gQ(y|v) are the same if and only if µv1 − µv2 = ρ(µx − µy). In other

words, when the two groups are different, that is, when µv1 ̸= µv2, the observed conditional

distributions can be the same if the difference in the means of the observed form scores

multiplied by the correlation between the anchor and the form scores (note ρP = ρQ) equals

the difference in the observed anchor score means.
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3 Comparison of Distributions

To use the arguments in section 2 and determine whether the FE equipercentile

equating method is appropriate for use in equating practice, we need to test whether the

item difficulty distributions of form X and form Y are the same, and whether the observed

conditional distributions fP (x|v) and gQ(y|v) are the same.

3.1 Comparison of Two Test Form Distributions

When the two groups are equivalent, testing form equivalence can be demonstrated

by testing the equivalence of the two score distributions on form X and form Y , as discussed

by Hanson (1996). Alternatively, Dorans and Lawrence (1990) used the standard error of

linear equating for equivalent groups to determine if the two nearly identical test forms are

the same. However, when the group abilities are very different, the preceding approaches

are not applicable. Instead, reliable item statistics for items on the test forms are required

to compare the forms. We assume that the item difficulty statistics, such as item difficulty

parameters from an item response theory calibration or P -plus or Delta from conventional

analysis (see Swineford, 1980), are available and reliable.

Many statistical methods can be used to test the homogeneity of two discrete

distributions in a contingency table (see Agresti, 2002). One of them is the simple

goodness-of-fit test for homogeneity, which may help to identify whether two test forms are

the same from the perspective of test statistical specifications. However, one issue is that

usually, at each item difficulty level, there are only a few items. If the sample size compared

to the number of categories is small, the accuracy of this test is compromised.

Another option is to carry out the Kolmogorov–Smirnov (KS) two-sample test (see

Conover, 1971) or other related tests using the item difficulty statistics directly, instead

of contingency tables. The KS test is one of the most useful and general nonparametric

methods for comparing two samples as it is sensitive to differences in both location and

shape of the empirical cumulative distribution functions Fn(x) and F ′
n(x) of the two

samples, where n is the number of items in a test form in our setting. The KS statistic is
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defined as

Dn = sup
x

|Fn(x)− F ′
n(x)|,

which measures the supreme difference between the two empirical cumulative distributions.

When the sample size n increases, Dn converges to the Kolmogorov distribution (see

Conover, 1971, p. 309). Larger values of the KS statistic indicate larger differences between

the item difficulty distributions of the two test forms. Because the KS statistic is based on

asymptotic results, it is not wise to use it when the number of items on the test is small.

Besides statistical tests, graphic comparisons of the empirical item difficulty distributions

are also recommended.

3.2 Comparison of Two Conditional Distributions

Because a complete examination of conditional distributions is too tedious when

the score range is large, we focus on comparison of summary statistics: the conditional

mean, the conditional standard deviation, and the conditional skewness. In addition, we

modify those statistics suggested by Holland and Thayer (2000, section 4) for our purposes.

Let Z1, Z2, and Z3 be the discrepancies of conditional means, conditional variances,

and conditional skewnesses of the two conditional distributions for a given anchor score,

respectively, defined as

Z1 =
M1X −M1Y√

(M2X +M2Y )/N
,

Z2 =
logM2X − logM2Y√(
M4X

M2
2X

+ M4Y

M2
2Y

− 2
)
/N

, (2)

Z3 =

M3X

M
3/2
2X

− M3Y

M
3/2
2Y√

3/N
,

where MiX and MiY are the ith conditional central sample moments for i = 1, 2, 3, 4;

N denotes the number of form scores for the given anchor score. When the two sets of

conditional distributions are the same, that is, when fP (x|v) and gQ(y|v) are the same, Z1

and Z2 follow an approximate standard normal distribution. As mentioned by Holland

and Thayer (2000), log variances are used because they often exhibit more approximate
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normality than variances themselves. Therefore we will expect Z1 and Z2 to fall in the

[−2, 2] confidence band with a 95% confidence level across the anchor score range. The

denominator of Z3 is the correct asymptotic variance value for data from the normal

distribution, and Z3 gives a rough index of the difference between the two conditional

distributions. Derivation of (2) is detailed in the appendix.

4 An Application

This section illustrates how the proposed method can be applied in a real test

equating situation.

We consider equating for a large-scale admissions test. A new test form X is equated

back to four old forms, Y 1, Y 2 , Y 3, and Y 4, through the NEAT design. The standardized

mean difference is used with a t test to see whether the mean difference on anchor scores

between the old and new groups is statistically significant. In this admission test, we

assume that the samples in equating are representative. The equating sample size is around

5,000. The number of items on each test form is around 70. We noticed, from Table 1,

that the new group is very close in ability to the old group, who took Y 4 based on the

standardized mean difference, so this link is not considered until the end of this section

because we primarily want to look at the situations in which the abilities are different. We

focus on FE equating with relatively large group differences, that is, equating X to Y 1, Y 2,

and Y 3, respectively.

To evaluate test form difficulties, we use the equated deltas (Swineford, 1980) for the

test items. Delta measures the item difficulty and is placed on the same scale for different

administrations via delta equating. In Table 2, we summarize the means and standard

deviations of item difficulty or equated deltas for the four forms. Comparison of the

Table 1
Ability Comparison of New and Old Groups
On anchor X to Y 1 X to Y 2 X to Y 3 X to Y 4
Std. mean differences −0.21 0.15 0.13 −0.04
Ratio of variances 1.07 0.98 1.03 1.02
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Table 2
Summary of New and Old Forms
Form difficulty X Y 1 Y 2 Y 3 Y 4
M 11.4 11.4 11.5 11.3 11.4
SD 2.3 2.4 2.4 2.4 2.4
KS statistic .0896 .0746 .1045 .1194
KS p value .951 .992 .858 .726

Note. KS = Kolmogorov–Smirnov.

summary statistics indicates that forms Y 1, Y 2, and Y 3 are all close to X. The KS test is

given in the last two rows of Table 2, where the KS statistic is the calculated test statistic

and the KS p value is the corresponding p value. Smaller KS values indicate that test forms

are closer in difficulty. We observe, as expected from the KS test, that the old and new

forms are comparable in difficulty. This is because all the items are pretested and the forms

are well constructed for this admission test. Among the three old forms, Y 2 is the closest

one in difficulty to the new form X. Figure 1 shows the empirical distributions of item

difficulties on the new form and the old forms. The solid line is the cumulative distribution

of the new form’s difficulty, and the dashed line is that of the old forms’ difficulty. When

the solid line is lower than the dashed line at a certain delta value, it indicates that up to

that delta value, the new form has fewer easier items. In Figure 1, we observe that the Y 2

and Y 1 lines closely intertwine with the X line, and the differences are relatively small,

which implies that Y 2 and Y 1 are close to X in form difficulty; Y 3 is easier overall than

X in form difficulty, except for a few hard items at the top; and overall, Y 4 is also close to

X in difficulty but has a relatively large difference around the delta value of 13. Hence,

from the preceding form difficulty analysis, Y 2 is the closest to X in form difficulty, and

Y 1 is the second closest. X and Y 3 are not that close in form difficulty. One would expect

that X-to-Y 2 equating would be close to the identity function, according to Theorem 2,

regardless of which equating methods are used.

To see whether FE equating can be used for the equating, we further analyze the

conditional score distributions. The conditional means, conditional standard deviations,

and conditional skewnesses, given anchor scores, are plotted in Figures 2–4, respectively.

As can be seen, among Y 1, Y 2, and Y 3, the conditional mean of Y 1 is more discrepant
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Figure 1. Cumulative distributions of form difficulty.
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Figure 2. Comparison of conditional means.
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from the new form, especially in the middle range of anchor scores. Y 2 and Y 3 have some

differences from the new form at negative anchor scores, but the number of examinees

having negative anchor scores is few. When looking at conditional standard deviations

and skewnesses, Y 2 and Y 3 are also relatively close to the new form X. In addition, we

calculate the statistics introduced in (2). Figures 5–7 are the realizations of Z1, Z2, and

Z3 for X-to-Y 4 (circles), X-to-Y 1 (triangles), X-to-Y 2 (plusses), and X-to-Y 3 (crosses)

equating.

From Figure 5, Z1 for X-to-Y 2 and Z1 for X-to-Y 3 are close to zero above anchor

score 5; Z1 for X-to-Y 1 is close to zero below anchor score 0 and above 15, and it is near

−2 in the rest of the range. From Figures 6 and 7, Z2 and Z3 for X-to-Y 2 are closer to the

zero line than are the other two (X-to-Y 1 and X-to-Y 3), and all lines are within the [−2, 2]

band.

As mentioned before, because of the well-constructed and thus similar test forms,

it is hard to rule out FE equating in all four links, and the equating functions should not

differ too much from the identity function. However, given that the forms and conditional

distributions are so close for X-to-Y 2, and the assumptions of FE equipercentile equating
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are most likely to be true, FE equipercentile equating should be considered when equating

X to Y 2 under the NEAT design. In fact, the raw-to-raw conversion line from FE equating

is the closest to the identity line in absolute value when compared to the other three

methods (see Figure 8, in which the plotted lines show differences between the identity

functions and the raw-to-raw conversions from four equating methods: Tucker, Levine, CE,

and FE; Kolen & Brennan, 2004). For the actual equating that was done, FE equipercentile

equating was not considered because of the convention that FE equipercentile equating

“should be conducted only when the two populations are reasonably similar to one another”

(Kolen & Brennan, 2004, p. 139). The operational or actual conversion for this link was

chosen to be the Levine method based on the fact that the ability difference is large and a

linear relationship between scores on the old and new forms seems to be supported by the

data.

Forms X and Y 3 are not as close in form difficulty as are forms X and Y 2, as seen

in Figure 1 and Table 2, but the observed conditional distributions are close, as seen in

Figures 2–7. For this link, FE equating may not be appropriate. For the actual equating,
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Figure 8. Difference of conversions for X-to-Y 2 equating.
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FE was not considered for the same reasons mentioned previously.

The similarities in form difficulties and the observed conditional distributions

between X and Y 1 are less well defined when compared to the preceding two links. It is not

clear whether FE equating is appropriate for equating X to Y 1. For the actual equating,

FE was not considered.

Now we consider X-to-Y 4 equating. As noticed before, the new and old groups have

similar abilities, and therefore the FE equating assumptions are likely to be true whether

or not forms and conditional distributions are close. For the actual equating, FE was

considered. Table 3 summarizes the statistical test results and suggestions as to whether

the FE method could be used in this application.

5 Conclusion

When two populations P and Q are of the same ability, the FE equating assumptions

are true. Theoretically, equating under the EG design should be carried out to adjust for

the form difference. However, when the two groups have similar ability, FE assumptions

are likely to be true. Then FE equipercentile equating is used in practice, instead of EG

equating, in the hope that FE equipercentile equating can adjust for systematic error,

which is introduced if the procedure used in equating cannot adequately deal with group or

form differences. On the other hand, when the two test forms are the same, no equating is

necessary; that is, the equating function is the identity function. In the case in

Table 3
Summary of Forms and Conditional Distributions

X to Y 1 X to Y 2 X to Y 3 X to Y 4
Are the abilities Different Different Different Same
the same or different?
Are the forms Not clear Equivalent Somewhat
equivalent or different? different
Are the conditional distributions Not clear Same Same
the same or different?
Is frequency estimation Not clear Yes No Yes
equating recommended?
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which differences in the two form score distributions are indistinguishable from differences

expected from sampling error, previous studies suggest that the difference in an observed

score equating function from an identity function would also be due to sampling error.

However, systematic error is not considered in these studies, and the approach used is not

applicable when two populations have different abilities. So we have to rely on reliable

item difficulty statistics. As discussed in this report, when the two forms are similar, that

is, the two forms have the same item difficulty distributions, and the observed conditional

distributions are the same, the FE equipercentile equating assumptions are likely to be

true. Then FE equipercentile equating can be used in practice, instead of no equating, in

the hope that FE equipercentile equating can adjust for systematic error.

This study is aimed at providing guidelines for appropriately using the FE

equipercentile equating method when the group difference in ability is large. As mentioned

earlier, when the two forms are not significantly different statistically, and when the

observed conditional distributions fP (x|v) and gQ(y|v) are not significantly different as

well, the assumptions of the FE equating method are likely to be true. Therefore, in this

situation, the equating function derived from the FE method should not be excluded from

consideration. When the two forms are not significantly different statistically but fP (x|v)

and gQ(y|v) are different, or when the two forms are statistically different but the observed

conditional distributions are statistically the same, then the assumptions of the FE equating

method are likely to be incorrect. In these two cases, the FE method is not recommended

for equating.

Judgment of whether the group difference in ability is sufficiently large is determined

by the individual testing program. One helpful statistical tool is to use a t test on the

anchor score means to see if there is a statistically significant difference between the old

and new group abilities. The standardized mean difference of the old and new groups used

in this report is an exemplary index. Also, in comparisons of test form item difficulty

distributions, it is crucial to use reliable, or at least comparable, item difficulty estimates.

Statistical tests are important tools, but different criteria for confirming homogeneity of

distributions are recommended and are program-specific.
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Note

1 Defined as (mean(P )−mean(Q))/Std(P +Q) on the anchor.
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Appendix

The following discusses the derivation of (2). Let n be the number of examinees taken from

a population. The sample variance M2 is then given by M2 =
∑

i(Xi − X̄)2/n. The

expected value of M2 for a sample of size n is then given by

E(M2) =
n− 1

n
µ2.

Similarly, the expected variance of the sample variance is given by

Var(M2) =
(n− 1)2

n3
µ4 −

(n− 1)(n− 3)

n3
µ2
2

(Kendall & Stuart, 1977, p. 260). By the Delta method (see, e.g., Kendall & Stuart, 1977,

chap. 10), for large n,

Var(logM2) ∼ {µ4

µ2
2

− 1}/n.

The sample skewness is given by γ = M3/M
3/2
2 . For a normal distribution population with

a sample size of n, the variance is given by Var(γ) ≈ 6/n (Kendall & Stuart, 1977, p. 316).
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